High Spatial Resolution Multi-Organ Finite Element Modeling of Ventricular-Arterial Coupling

نویسندگان

  • Sheikh Mohammad Shavik
  • Zhenxiang Jiang
  • Seungik Baek
  • Lik Chuan Lee
چکیده

While it has long been recognized that bi-directional interaction between the heart and the vasculature plays a critical role in the proper functioning of the cardiovascular system, a comprehensive study of this interaction has largely been hampered by a lack of modeling framework capable of simultaneously accommodating high-resolution models of the heart and vasculature. Here, we address this issue and present a computational modeling framework that couples finite element (FE) models of the left ventricle (LV) and aorta to elucidate ventricular-arterial coupling in the systemic circulation. We show in a baseline simulation that the framework predictions of (1) LV pressure-volume loop, (2) aorta pressure-diameter relationship, (3) pressure-waveforms of the aorta, LV, and left atrium (LA) over the cardiac cycle are consistent with the physiological measurements found in healthy human. To develop insights of ventricular-arterial interactions, the framework was then used to simulate how alterations in the geometrical or, material parameter(s) of the aorta affect the LV and vice versa. We show that changing the geometry and microstructure of the aorta model in the framework led to changes in the functional behaviors of both LV and aorta that are consistent with experimental observations. On the other hand, changing contractility and passive stiffness of the LV model in the framework also produced changes in both the LV and aorta functional behaviors that are consistent with physiology principles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material

This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...

متن کامل

Fast Finite Element Method Using Multi-Step Mesh Process

This paper introduces a new method for accelerating current sluggish FEM and improving memory demand in FEM problems with high node resolution or bulky structures. Like most of the numerical methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix equation into several smaller size matrices, the solving procedure can be accelerated. For implementing ...

متن کامل

Multi-objective optimization of buckling load for a laminated composite plate by coupling genetic algorithm and FEM

In this paper, a combination method has been developed by coupling Multi-Objective Genetic Algorithms (MOGA) and Finite Element Method (FEM). This method has been applied for determination of the optimal stacking sequence of laminated composite plate against buckling. The most important parameters in optimization of a laminated composite plate such as, angle, thickness, number, and material of ...

متن کامل

Cerebrospinal Pulsation Hydrodynamics in a 2D Simulation of Brain Ventricles

In this article, dynamics of the cerebrospinal fluid (CSF) was studied, using computational fluid dynamics. Using MRI images of two special cases, a 2-dimensional model of the ventricular system was made. CSF velocity and pressure distribution in ventricular system have high importance since the flow pattern of this liquid has an important effect on intracranial pressure, i.e., ICP, which has a...

متن کامل

Multiscale modeling of coastal, shelf, and global ocean dynamics

In contemporary ocean science, modeling systems that integrate understanding of complex multiscale phenomena and utilize efficient numerics are paramount. Many of today's fundamental ocean science questions involve multiple scales and multiple dynamics. A new generation of modeling systems would allow to study such questions quantitatively by being less restrictive dynamically and more efficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018